TECHNICAL SHEET

VERSAPIPE

High Density Polyethylene DIPS Pipe

for Potable Water Applications
Manufactured from PE4710. Certified to NSF pw,

Scope

This specification sheet designates the requirements of VERSAPIPE ${ }^{\circledR}$ HD100 PW high density polyethylene water pipe based on outside diameter "Ductile Iron Pipe Size" (DIPS) SDR and third party certified to CSA B137.1 and NSF 14 standards. It describes the minimum requirements for the fabrication of VERSAPIPE® HD100 PW pipe for potable water and wastewater transport applications at operating pressure up to $1,38 \mathrm{MPa}(200 \mathrm{psi})$. The maximum recommended operating temperature for pressure service is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

Raw Material

All VERSAPIPE ${ }^{\circledR}$ HD100 PW high density polyethylene pipe are manufactured from PE4710 high density polyethylene resin listed in the Plastics Pipe Institute (PPI) TR-4 listing and meeting the cell classification PE445574, or equivalent, as per ASTM D3350. The raw material with carbon black as an UV inhibitor allowing the pipe to be stored outside. This formulation is classified CC3 for its oxidative resistance. See the tables below for more information.

Printline

Versaprofiles VERSAPIPE ${ }^{\circledR}$ HD100 PW pipe is identified with permanent marking and sequential footage numbering every two (2) feet.

Handling, joining and installation

Do not drag or roll DIPS VERSAPIPE ${ }^{\circledR}$ HD100 PW pipe across rocks or rough ground. Installation and backfill practices for DIPS VERSAPIPE ${ }^{\circledR}$ HD100 PW pipe in trenched should comply with guidelines prepared by the Plastics Pipe Institute (PPI) ${ }^{1}$, and according to the installation recommendations found in CSA B137.1 standards. DIPS VERSAPIPE ${ }^{\circledR}$ HD100 PW pipe is connected by heat fusions in accordance with ASTM F2620 and Plastics Pipe Institute (PPI) ${ }^{2}$ recommendations. The fittings have to be made of the same type of polyethylene as the pipe itself.

RAW MATERIAL PROPERTIES AND CELL CLASSIFICATION1 (PER ASTM D3350)

Properties	Cell Classification (445574C)	ASTM Test Method	Typical Values	
			Imperial Units	SI Units
Density (natural)	4	D792	$0,949 \mathrm{~g} / \mathrm{cm}^{3}$	$0,949 \mathrm{~g} / \mathrm{cm}^{3}$
Melt Index ($190^{\circ} \mathrm{C} / 2,16 \mathrm{~kg}$)	4	D1238	$7 \mathrm{~g} / 10 \mathrm{~min}$	$7 \mathrm{~g} / 10 \mathrm{~min}$
Flexural Modulus	5	D790B	150000 psi	1030 MPa
Tensile Strength at Yield	5	D638	> 3500 psi	> $24,1 \mathrm{MPa}$
Elongation at Break	-	D638	> 500\%	> 500\%
Resistance to Slow Crack Growth (SCG), h (PENT)	7	F1473	> 10000 h	> 10000 h
Hydrostatic Design Basis @ $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right.$)	4	02837	1600 psi	11 MPa
Hydrostatic Design Basis @ $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$		D2837	1000 psi	6,9 MPa
Carbon Black Concentration	C	-	2\%	2\%
IZOD Impact Strenght, Notched		D256A	> 9.1 ft-lb / po	$>490 \mathrm{~J} / \mathrm{m}$
Brittleness Temperature		D746A	$<-103^{\circ} \mathrm{F}$	$<-75^{\circ} \mathrm{C}$
Thermal Stability		D3350	$>428{ }^{\circ} \mathrm{F}$	$>220^{\circ} \mathrm{C}$
Oxidative resistance class		D3350	CC3	CC3

${ }^{1}$ Material listed in the Plastic Pipe Institute TR-4 listing.
STANDARD PRODUCT SIZES DIPS SDR ${ }^{2}$ (PER ASTM F714)

PRESSURE RATING DIPS SDR

Pipe Standard Dimension Ratio (SDR)	Standard Pressure Rating (PSIG @ $\left.23^{\circ} \mathrm{C}\left[73^{\circ} \mathrm{F}\right]\right)$	
17	psi	kPa
13,5	125	900
11	160	1100
200	1380	

MINIMUM BENDING RADIUS

Pipe Standard Dimension Ratio (SDR)	Minimum Long Term Cold Bending Radius
17	27×0 D
11 and 13,5	$25 \times 0 \mathrm{D}$

$O D=$ Pipe outside diameter.
${ }^{2}$ DIPS (Ductile Iron Pipe Size) SDR (outside diameter controlled pipe) pipe dimensions.
${ }^{3}$ Ask your account manager about the availability of the displayed sizes. Versaprofiles may also offer options that are not listed in this document.
info@versaprofiles.com 18773357473
fin

FLUID VOLUME CALCULATION

$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~L}$
Where $\begin{aligned} V & =\text { Volume, } \mathrm{ft}^{3}\left(\mathrm{~m}^{3}\right) \\ \Pi & =3,1416 \ldots \\ r & =\text { Pipe Inside Radius (ID/2), } \mathrm{ft}(\mathrm{~m}) \\ \mathrm{L} & =\text { Pipe Length, } \mathrm{ft}(\mathrm{~m}) \end{aligned}$
For Weight Calculation, W = V D Where W = Weight, lb V = Calculated Volume, ft^{3} $D=$ Fluid Density, $\mathrm{lb} / \mathrm{ft}^{3}$

THERMAL EXPANSION CALCULATION

$\Delta \mathrm{L}=\mathrm{L} \alpha \Delta \mathrm{T}$
Where $\Delta L=$ Pipeline Lenght Variation, ft $\mathrm{L}=$ Pipe Length, ft $\alpha=12 \times 10^{-5}$ (Linear Thermal Expansion cœfficient, in / [in $\left.{ }^{\circ} \mathrm{F}\right]$) $\Delta \mathrm{T}=$ Temperature Variation, ${ }^{\circ} \mathrm{F}$

PACKAGING TYPE AND STANDARD LENGHTS¹

Nominal Diameter in 2	Stick ft	
4 to 8	$20,40,50$	
Nominal Diameter in 2	Coil ft	Reel $\mathrm{ft} \mathrm{(m)}$
4	100,250	656
6	-	(200)

${ }^{1}$ Other stick, roll and coil lengths available on request. ${ }^{2}$ Other diameters \& DR available on request.

TEMPERATURE COMPENSATING MULTIPLIER

References: ASTM Standards D3350, F2620 and F714 - CSA B137.1 - ANSI/AWWA C906 Standards - NSF 14 - Plastics Pipe Institute (PPI), http://plasticpipe.org/publications/pe_handbook.html

